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Abstract

We prove that the topological Hochschild homology specttum THH(R) of an E.. spectrum
R is the S'-indexed sum of copies R in the category of Eo ring spectra. As a consequence, we
obtain a natural S'-action and compatible power operations on THH(R). In addition, THH(R)
admits an A4.-comultiplication making it an 4., Hopf algebra spectrum over R. © 1997 Elsevier
Science B.V.

AMS Classification: 55P42; 19D10; 16E40

1. Introduction and main results

Around 1985 Bokstedt introduced the notion of Topological Hochschild Homology
THH of a functor with smash products [2] (for a published version see [4]). The
category of such functors is topologically enriched. In a conversation Békstedt pointed
out that if this category were tensored THH(R) ought to be the tensor R® S' in the
commutative case.

Recall that a category is topologically enriched if the morphism sets are topologized
such that composition is continuous. In a topologically enriched category we have the
notions of indexed limits and colimits.

1.1. Definition. Let ) and # be topologically enriched categories and let F: 4 —
Fop, G: AP — Top and X : A — B be continuous functors. The limit of X indexed
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by F is an object limp X in # together with a natural homeomorphism
2 (B,limp X) = Funct(X', Top)(F, (B, X(-))),

where Funct(A, Jop) denotes the category of continuous functors J — Fop. The
colimit of X indexed by G is an object colimg X in # together with a natural homeo-
morphism

4 (colimg X, B) = Funct(A*, T op)(G, B(X(~), B)).

If F and G are the constant functors to a point we get the usual definitions of limits and
colimits with the additional requirement that the natural bijections be homeomorphisms.
If A consists of one object and its identity and F and G take the space K as value
while X takes B € ob# as value, we denote limp X by BX and colimgX by BRK.

1.2. Definition. If B ® K exist for all B € # and K € Jop, B is called tensored. If
all BK exist it is called cotensored.

In view of Bokstedt’s remark and its implications tensored and cotensored structures
are our central concern. They have the following universal property.

1.3. Let # be a topologically enriched tensored and cotensored category. Then for
By,B; € # and K € Jop we have natural homeomorphisms

B(B1 ® K, By)= Top(K, B(B1, B,)) = B(B,, BY).

This shows that B ® K is the K-indexed sum of copies B if K is discrete and BX
the K-indexed product. Hence, B ® K and BX are topologically parametrized versions
of K-indexed sums and products.

From (1.3) we immediately deduce

1.4. For B € # and K,L € Jop we have natural isomorphisms

(BRK)RL=B® (K x L),
(BK)LgBKXL.

The central idea of Bokstedt’s definition of THH is to take the classical definition of
Hochschild homology, replace ring by a suitable notion of ring spectrum and the tensor
product by the smash product. At that time there was no known category of spectra
with an associative, commutative and unital smash product. So Bokstedt introduced
unstably defined functors with smash products whose structures allow a stabilization
procedure, and a fairly small coherence machinery took care of a coherently homotopy
associative, commutative and unital smash product of such functors.
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Recently Elmendorf et al. [6,7] discovered a category of spectra which admits a
strictly (up to natural isomorphisms) associative, commutative and unital smash product
making it into a symmetric monoidal category. Moreover, it has the pleasant property
that the Ao, ring spectra and E, ring spectra, which are structured by the linear
isometry operad %, are exactly the monoids, respectively, commutative monoids in
this category. Hence, it is very simple to define THH in terms of this smash product
* (see Section 4), and therefore we will work in this setting. It has not been established
yet that this definition of THH agrees with the one of Békstedt, but this is very likely
to be true [15], at least for CW ring spectra [7, Ch. I].

The restriction to #-structured ring spectra is not substantial: recall from [13] that
an E., operad is a X-free operad € such that each é(n) is contractible. If € is an
operad without an action of X, on ¥(n) and each %(n) is contractible, we call ¥ an
Ao operad. Our canonical example is the linear isometries operad ¥: let # denote the
category of real inner product spaces and linear isometries. Let % = R*> be an object
in 4, then L (n)=S(%®",%) defines an E, operad whose structure maps are given
by composition. If we forget the action of X, on #®", & reduces to an 4., operad.

1.5. Definition. An A, ring spectrum consists of a spectrum R, an 4., operad ¢
augmented over £ and structure maps

{n:E(n)XR"—R,

n > 0, defining an action of € on R. Here R" is the n-fold external smash product (see
Section 2 for a recollection of the basic definitions). If ¥ is an E, operad angmented
over ¥ (as E,, operad) and the {, are X,-equivariant, R is an E., ring spectrum.

Let R be an 4, or E,, ring spectrum structured by an operad €. Let C denote its as-
sociated monad [10, VIL.3]. Since ¥ augments over . the monad C acts on the monad
L associated with the operad .. Applying the functorial two-sided barconstruction we
obtain maps of ring spectra

B(L,C,R)«—B(C,C,R)—R,

which are weak equivalences and homomorphisms with respect to the C-structure.
Moreover, the left ring spectrum is structured by the linear isometry operad (for the
two-sided barconstruction on space level and its properties see [13, Section 9]. The
spectrum level construction is similar, details will appear in [7]).

Hence, there is a functorial way to replace each A, or E,, ring spectrum by a
weakly equivalent one structured by the operad £. This allows the following:

1.6. Convention. A, or E, ring spectrum will always mean a ring spectrum structured
by the linear isometry operad.

Let & denote the category of E,, ring spectra and homomorphisms. Our main
results are
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Theorem A. & is topologically enriched in a canonical way and contains all indexed
limits and colimits. In particular, & », is tensored and cotensored.

A different proof that &, is tensored and cotensored will appear in a joint paper by
Mike Hopkins and the first author.

Theorem B. For E., ring spectra R there is a natural isomorphism in &
THH(R)~R® S".

In particular, THH(R) is again an E., ring spectrum and its multiplication v:
THH(R)x THH(R) — THH(R) is induced by the folding map S' US' — 8.

This result has a number of interesting consequences. We include just the most
straightforward ones; others will be studied in a separate paper.

Since R® S! is a continuous functor in both variables we have a homomorphism of
topological monoids

A: Top(S', ") — &.o(THH(R), THH(R))

natural in the &, ring spectrum R. The adjoint of the multiplication S' x §' — S! also
defines a homomorphism of topological monoids

p:S'— Top(S',sH.
The composite 10 p=4 defines an S'-action on THH(R) and we obtain

Theorem C. For an E., ring spectrum R there is an S'-action on THH(R) through
homomorphisms, i.e. a homomorphism of topological monoids

@:S' - & o(THH(R), THH(R)).

There are also obvious power operations
& :THH(R)— THH(R)
of the types considered by Loday [11] and McCarthy [14] defined on S' by
()= peZ.

Since the product of THH(R) is given by the folding map S' LiS' — S! the following
result can easily be checked by considering the S' factor.

Theorem D. For each E., ring spectrum R there exist natural power operations

@ : THH(R) — THH(R)
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one for each r € Z satisfying
(i) ®° factors through the natural monomorphism

1:R=R® {1} - THH(R)
induced by the inclusion {1} C S'. It defines a retraction of 1.
(ii) ' =id.
(iii) " o P*=P"5.
(iv) Each ®" is multiplicative, i.e. a homomorphism of E, ring spectra.
(v) Compatability with the S'-action. The following diagram commutes:

THH(R)® S' —— THH(R)
¢r®(pr '
THH(R)® S' —— THH(R)

Here o denotes the adjoint of d.
THH(R) with its S'-action has an obvious universal property:

Theorem E. The natural monomorphism 1z : R=R® {1} — THH(R) has the following
universal property: given an Eo, ring spectrum R’ with an S'-action through homo-
morphisms and a homomorphism f:R— R’ then there exists a unique S'-equivariant
homomorphism [ : THH(R) — R’ such that f oir= f.

By (1.3) — ® S': oo — oo is left adjoint to (—) : Eoe — Eco. We deduce

Theorem F. THH(—): & — Ex preserves colimits. In particular, since x is the
coproduct in &,

THH(R, * R;)= THH(R,) x THH(R,).

In [2] Bokstedt defined a map
A:RASL — THH(R),

which plays an important role in the calculations of [3]. The existence of 4 is obvious
in our set-up. Let x: {*} — S denote the map sending * to x € S.

Theorem G. For any E, ring spectrum R there is a natural spectrum level Bikstedt
map

AL:RAS, — THH(R)
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with the following properties:
(i) A is S'-equivariant,
(i) if T is an Eo ring spectrum and f:RA S}, — T a map of spectra such that

foRAx,):R=RA{x}, =RAS! T

is an E, homomorphism for each x € §', there is a unique E., homomorphism
f:THH(R)— T such that f=f oA

Theorem H. For each x € S' the E,, homomorphism
iy=id ®x:R=R® {x} > THH(R)

defines an E, R-algebra structure on THH(R). Hence, if R is an Eilenberg—MacLane
spectrum THH(R) is a product of Eilenberg—MacLane spectra.

Let xz be the smash product over R as defined in Definition 6.1 below. If 4 and B
are E, R-algebras A z B is the pushout in & of

o o———
—

B

—— A%

=

(the proof is the same as the usual one). Give THH(R) the R-algebra structure from ig.
Then the projection

THH(R) * THH(R) — THH(R) g THH(R)

is induced by the map S’ U S!' —»S' v S' with 1 € S! as base point. The algebra
multiplication is given by the based folding map S! v §' — S!.
The pinch map S! — S! v 5! now defines an 4., comultiplication

THH(R)— THH(R) xg THH(R)
with (homotopy) counit induced by S' — %, and we obtain

Theorem 1. If R is an E, ring spectrum THH(R) has an A, Hopf algebra structure
over R.

1.7. Remark. It might be worth noticing that there is a simplicial E,, ring spectrum
E, with Eg =R and E, the n-fold application of THH to R. Its realization is RQ CP*°.

The paper is organized as follows. In Section 2 we recall the basic definitions and re-
sults from [6, 7, 10] which we will use in our constructions and add a few facts left out
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in these papers. Section 3 provides the proof of Theorem A. Topological Hochschild
homology will be defined and studied in Section 4 which includes the proof of Theo-
rem B. Section 5 deals with the Bokstedt map in a more general context. The paper
ends with a section on the extension of the definition of topological Hochschild ho-
mology to E,, algebras over E, ring spectra and some remarks on possible variations
due to changes of the frame work provided by the work of Elmendorf et al. [7]

2, Spectra and (unital) S-modules

Throughout this paper Jop denotes the category of compactly generated weak
Hausdorff spaces and Jop, its based version. Limits, colimits and function spaces
are taken in these categories.

We will work with coordinate-free spectra in the sense of [10]. Given a universe,
i.e. real inner product space % =R, a %-indexed prespectrum D assigns to each
finite-dimensional subspace V of % a based space DV and to each orthogonal pair
V,W a structure map

ovw:DV - QVD(V o W)

satisfying the obvious associativity condition. D is a spectrum if the oy, are homeo-
morphisms. A map of #-indexed (pre)-spectra f : D — D' is a family fV : DV - D'V
of based maps preserving the structure. We denote the resulting categories of prespectra
and spectra by 2% and %, respectively. Both categories are topologically enriched by
giving their morphism sets from D to D' the subspace topology of Iy Jop,(DV,D'V).

For a prespectrum D and a based space K the assignments V — DVAK and V —
T opy(K,DV) define the small smash product and the small function spectrum functors

PU x Top,, — PU, (D,K)y—DAK,
PU x Top¥ — PU, (D,K)— F(K,D).
The small function spectrum functor restricts to a functor
FU X Topl — LU.
For the small smash product we use the composite
SFU % Topy — PU— SU, (EK)—LEANK),

where L is the spectrification [10, p. 13]. In abuse of notation we again write EAK
for L(E AK).

2.1. Proposition (Lewis et al. [10, 1.3.3; 1.3.4]). Let E, E' € U, K,L€ T op,.
(1) There are natural homeomorphisms

SUENK,E') = Top (K, SUE,E')) = SUE,F(K,E)).
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(2) There are natural isomorphisms

EAS"~E, (EAK)AL=EAKAL),
F(S*,Ey~E, F(KALE)=F(KF(LE)).

To obtain smash products between spectra we note the existence of an associative,
commutative and unital external smash product functor

LU FU — PUDY'), (EE)—ENE

induced by the spectrification of the functor defined by the formula (EAE' YV & V') =
EV AE'V'. To obtain an internal smash product in % we apply the twisted half
smash product of [10]: let # be the topologically enriched category of universes and
Fop/#(U,U") the category of spaces over F(%,¥'), then

2.2. Proposition (Lewis et al. [10, VL.1.1; VL.1.5; VL3.1]). There are functors

ToplF(U, U Y SU—~ SU, (4,E)—AXE,
Top/F(U,UYP X LU — FU, (4,E)— F[4,E),
such that, for A€ Top/#(U,U'), BETop/F (U, U"), ECSU, E'c SU and K €
'g-op*s
(1) there is a natural homeomorphism
FU (Ax E,E'Y= PU(E,F[A,E")),
(2) AX E preserves colimits in both variables, F[A,E") preserves limits in E' and
converts colimits in A to limits,
(3) there are isomorphisms
AX (EAK) > (AXx EYAK and F(K,F{A,E')) = F[A,F(K,E")),
(4) for Bx A— F(U,U") x F(U,U ) F(U,U") we have a natural isomorphism
Bx (AX E)= (Bx A)x E.
We could now define an internal smash product in % by the correspondence
(E,ENY— F(USU U)X (ENE").
By the geometry of the spaces J(%,%') this internal smash product is coherently

homotopy associative, homotopy commutative and homotopy unital. The coherence
theory makes any construction involving this smash product cumbersome.
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Recently, Elmendorf et al. [6,7] managed to incorporate the coherence directly into
the definition to come up with a smash product on a sufficiently large category of
spectra with much better properties:

2.3. Let L (n)=F#(U",) denote the linear isometry operad on %. An S-module is a
spectrum M with an #(1)-action, i.e. M comes equipped with amap ¢: Z(1)xM — M
such that

{id} x M LA)XM
M

PUOYX (L)X M)—— (EO)x LO)xM — 2 o1yxM
LAYXE jé

LM — M

commute (y is composition in the operad .Z). A map of S-modules is a map f:M — N
of spectra respecting the #(1)-action.

Recall that the stable categories are obtained by formally inverting weak equiva-
lences, i.e. maps of spectra f:E — E’ for which each f(V):E(V)—E'(V) is a weak
equivalence.

2.4. Proposition (Elmendorf et al. [6, Theorem 1; 7, Ch. I]). The category S-.#od
of S-modules is complete and cocomplete, with both limits and colimits created in
SFU. The forgetful functor S-Mod — FU induces an equivalence of the associated
stable categories.

We need a slightly stronger version of the first part of (2.4) which is implicit in
[10]. Let F: 4 — %% be a diagram of spectra. The spectrum limF is defined by
(lim F)(V)=1lim F(—) (V). The same procedure for colimits produces a prespectrum
which we have to spectrify. By [10] spectrification is a continuous functor. Since both
functors Jop,(—,Y) and Jop, (X, —) are continuous, we have

2.5. Proposition. Let F:€ — FU be a diagram of spectra. Then there are natural
homeomorphisms

SU(colim F,E) = lim SU(F,E),
SU(E,lim F) = lim $U(E, F).

And, by restricting the morphism spaces to their subspaces of maps of S-modules,
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2.6. Addendum to (2.4). Let F : € — S-.#od be a diagram of S-modules. Then there
are natural homeomorphisms

S-Mod(colim F, M) 2 lim S-.#od(F, M),
S-Mod(M,im F) = lim S-.#od(M, F).

As an immediate consequence we have

2.7. Proposition. As a topologically enriched category S contains all indexed limits
and colimits.

Proof. By (2.1) % is tensored by (E,K)— EA(K,) and cotensored by (E,K)—
F(K.,E). Together with (2.5) this proves the claim [9, (3.70)]. O

To obtain the same result for S-.#od we need to know that it is tensored and
cotensored. This is a consequence of the following variant of a result of Linton.

2.8. Lemma. Let T:% — € be a continuous monad on a topologically enriched cat-
egory € and let 67 be its category of algebras. Then

(1) the forgetful functor U: €7 — € creates all indexed limits,

(2) if €7 has continuous coequalizers (in the sense of (2.5), (2.6)) and € is tensored,
then €7 contains all indexed colimits.

Proof. (1) is the topologically enriched version of [12, VL2, Excercise 2]. If we denote
the free functor ¥ — %7 also by T, then T is left adjoint to U, hence preserves indexed
colimits. In particular, T(C® K)=(TC)®K for K€ Top. Let 4. T o T — T denote the
multiplication of 7. Then for X € 7 with structure map ¢: TX —X

uX

TTX — TXx-5X

¢

is a coequalizer in €7 by Beck’s tripleability theorem [12, V1.7]. Hence the coequalizer
of

nX@K
TTX®K —— 3 TX®K
TERK
satisfies the universal property of X ® K. The result (2) now follows [9, (3.70)]. O
By (2.8) we can apply the proof of the corresponding result from [7, Ch. I} to obtain

2.9. Proposition. As topologically enriched category S-.#od contains ail indexed lim-
its and colimits, and both are created in SU.
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For S-modules M and N we define the smash product over S to be the coequalizer
in SU

y X MAN
(ZQ)x L) x L)) x (MAN) ——— ZL(2)x (M AN)—MAsN.
L2YxEu NN

2.10. Proposition (Elmendorf et al. [6, Theorem 1;7, Ch. I]). The smash product
over S is an associative and commutative bifunctor, and there is a natural map
SAsM — M which is a weak equivalence if M is a CW spectrum and an isomor-
phism if M =S. There is also a functorial function spectrum Fs(M,P) of S-modules
and a natural homeomorphism

S-Mod(MAgN, P) = S-.Hod(N, Fs(M, P)).

To obtain a smash product which is also unital Elmendorf et al. consider the category
S-#od, of S-modules under S. Its objects are S-modules M with a map of S-modules
n:S— M. Such an object is called unital S-module.

2.11. Proposition. As a topologically enriched category S-#od, contains all indexed
limits and colimits. Ordinary colimits of connected diagrams and all indexed limits
are created in SU.

Proof. M — MV S is a monad on S-.#od whose algebras are precisely the unital S-
modules: if M is an algebra with structure map ¢ : M v S — M then M is unital via
S—MVS—M, conversely, if M is unital, n:S — M, an algebra structure map is
defined by

idvy fold
MVS—MVM—M

Hence, the forgetful S-.#od, — S-.#od creates all indexed limits. Now let F: % — S-
AMod, be a diagram in the usual sense, col F its colimit in S-.#0od and col S the colimit
in S-#od of the constant ¥-diagram on S. Then colim F in S-.#od, is the pushout
in S-#od of

col§ ——§

col F

Hence, S-.#0od has arbitrary indexed colimits by (2.8). If € is connected S= col§
and hence col F = colimF. O

2.12. Definition (Elmendorf et al. [6, Section 2; 7, Chap. 1]). Let M and N be
unital S-modules. The reduced smash product M x N is the pushout in S-.#od
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(M AsS)V (SAsN) ——— M AsN

MVN ———— MxN
with the structure map S X SAs S M AgN - M xN.

2.13. Proposition (Elmendorf et al. [6, Section 2]). S-.#od, is a symmetric monoidal
category with tensor product % and unit S. Its monoids and commutative monoids
are precisely the A, and Ey, ring spectra, respectively.

Although M x — does not preserve sums in the category S-.#od, we note for later use.
2.14. Lemma. M» — preserves colimits of connected diagrams in S-#od,.

Proof. By (2.9) and (2.11) colimits of connected diagrams are created in S-.#od.
For an S-module K the functor X V —:§-.#od — S-.#od preserves colimits of con-
nected diagrams while K Ag — : S-#od — S-.#od preserves all colimits because it is a
left adjoint (2.10). The result follows since colimits commute with pushouts. [

3. Ring spectra and R-modules
Before we start with the proof of Theorem A we need to consider R-modules.

3.1. Definition. Let R be an A, or £, ring spectrum. A wunital (left) R-module is a
unital S-module M with a structure map {: R+« M — M in S-Mod, such that

M
RxRAM M RaM  SaM—LY Ram

JR*& Jf \J{
RAM—— M1 M

commute, where p:RxR— R is the multiplication and #:S — R the unit. A map of
unital R-modules is a map of unital S-modules respecting the R-structure.

3.2. Proposition. The category R-.#od, of unital R-modules is topologically enriched
and contains all indexed limits and colimits. Colimits of connected diagrams and
arbitrary indexed limits are created in S-.#od,.

Proof. M +— R« M is a continuous monad on S-.#od, with unit M 2S+«M - RxM
whose algebras are by definition precisely the unital R-modules (the module structure
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maps are the algebra structure maps of the monad and vice versa). Hence, the forgetful
R-#Hod, — S-Hod, creates all indexed limits (Lemma 2.8(1)). Now let F:¥ — R-
Mod, be a connected diagram and Q € S-#od, its colimit in S-.#od,. Since Rx —
preserves colimits of connected diagrams in S-.#od, (Lemma 2.14) Q is a unital R-
module with structure map

(o R*x Q= colim(R F)— colimF = Q.

It is easy to check that () has the topologized universal property of a colimit in R-
Mod,. Since coequalizers are colimits of connected diagrams the result follows from
Propositions 2.8 and 2.11. O

Let £ be the category of E ring spectra and their homomorphisms. As always
before we topologically enrich &, by giving & (E,E’) the subspace topology from
FSU(E,E').

3.3. Proposition (Elmendorf et al. [6, Proposition 2]). E x E’ is the sum of E and E'
in €, and the folding map E x E — E is the multiplication of E.

3.4. Proof of Theorem A. Let L: 5% — S % be the monad associated with the linear
isometry operad .. Then L is continuous and & its category of algebras [10, VIIL
3). Hence, the forgetful o — S % creates all indexed limits (Lemma 2.8(1)). To
show the existence of indexed colimits we have to estabish the existence of continucus
coequalizers (Lemma 2.8(2)). So given

O—=R
g

in &x. Let f1 denote the composite
Rwf R
fi:R*0———R«R-— R,

where pg is the multiplication of R. Then f; is a homomorphism of R-modules. Take
the coequalizer T in R-.#od.,

h
(35) R*xQ——=RLT
4l

We show that T is the coequalizer of f and g in €. Since T — preserves coequalizers
in R-.#od, the spectrum T » T is the colimit in R-#od, of

SineRe
RxQO*R*»Q """ 3IRxR*Q
'R Y. 412
(3.6) RaQunfi| | ReQxg Refi| | Reg
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and the colimits structure maps are induced from
txt:R*R — TxT.

Since R is a commutative monoid in &, the following diagram commutes (t is the
interchange):

RaQ#R%Q —L%) |, Ry RuRwR —2 _ RaR
=~ | RwtwR o | RwtaR
RARxOQ —ZRI | b RuRwR o
Hr*itg HR* iR
RxQ Ref JReR— .}

Hence, f; and correspondingly g, are E., homomorphisms, and (3.6) is a diagram
in . The folding maps, which define the various multiplications, induce a map of
diagram (3.6) to T, giving rise to an R-module homomorphism ur: T*T — T satisfying

pr o (txt) =t o pp.

In particular, T is an E, ring spectrum and ¢ an E., homomorphism. Now given an
E, homomorphism 4#:R— U such that Ao f =hog then

hopgo (Ref)= iy o (hwh)o (Rx f) = iy o (hw(ho £)) = ho jig o (Rwg).
Hence, there is a unique R-module homomorphism
q:T—-U

such that got=~h. Since hxh induces a map of (3.6) to UxU, it follows that g is
an E., homomorphism. Conversely, given an E,, homomorphism ¢:7 — U such that
goto fi=goto f, as R-module homomorphisms then they agree as E., homomor-
phisms, and hence goto f =qgotog because RxQ is the sum in & and pg is the
folding map. Hence, the natural homeomorphism

Equalizer (R-#o0d,.(R,U) éjR-Jlod*(R*Q, U))XR-Mod, (T, U)

ar

restricts to the subspaces of E., homomorphisms
*
Equalizer (£oo(R, U) —/——=3 E0(Q, U)) X E{ T, U). ]
gt
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4. Topological Hochschild homology

4.1. Definition. Let R be an 4., ring spectrum and M be an R-bimodule (defined anal-
ogously to (3.1)). The topological Hochschild homology THH(R; M) of R with coeffi-
cients in M is the topological realization in % of the simplicial spectrum THH(R; M ),

[r]— Rx - - - xRxM = R*""xM
(n copies of R) with the usual Hochschild structure maps

R*I’-I*é[
d® R"«M ——— R 'aM,

) R apaR* !
dR*"«M —————— R %M, 0O<i<n,

(R*"'w&)or
d" R"sM —————— R*™ LM,

) R* " lanaR «M
STRMAM ——— S R M, 0<i<n,

where u:RxR — R is the multiplication, 7 :S — R the unit, £; and &, the left and right
actions of R on M and 7 the cyclic permutation

T:Ra-- - *«R*«M — Rx - - - «xRxM*R.

If M =R we write THH(R) for THH(R; R).
The topological realization of a simplicial spectrum E, in % is the coend in %
of the functor

AP x DN >, (Im],[n]) = En A D(n)4,

where A(n) is the standard rn-simplex [5]. Since geometric realization commutes with
any monad in % (cf. [13, Theorem 12.2] for the space-level version; the spectrum-
level argument is similar, cf. [7, Ch. VI]), the geometric realization of a simplicial E,
ring is again an E, ring. In particular, if R is an E, ring and hence a commutative
monoid in S-#od, the simplicial spectrum THH(R), lives in £, so that THH(R) €
&. Hence, we have an endofunctor

THH : 600 — .

Let S1=A(1)e/0A(1)s denote the simplicial 1-sphere and f7:[n]—[1] the map de-
termined by (f7)~'(1) = {i,...,n}. Then

A([n), 11D = {f5> ST> - fa -
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The boundary and degeneracies are

o prm f,."_+11 for j<i,
ol forj2g,

i pr e {f,fl’ for j<i,
1

£ for j >

Since S} = A([n], [1D/(fF ~ fur1), and x is the coproduct in &, we have the ring
spectrum version of a well-known fact of classical Hochschild homology (e.g. see [11,
Section 3]).

4.2, If R® S} denotes the simplicial object [#] =R®S! in &, then THH(R),=
R®S!L.

Theorem B is a consequence of

4.3. Proposition. For any &, ring R the following diagram commutes up to natural
isomorphism

(R®—)>"
F 7 yaxd
Jop~ — &

T1 TZ

g (R@—)
Jop —— b

where we let T; denote the respective topological realization functors.

Proof. Consider the diagram

Eoc(R—)
> — Jop
Sz SI
&xo(R—)2"
op Cooldly op
L ——— Top~©

where S is the topologized singular functor right adjoint to 7; and
116085 Q= ([l F(AM)4+,0))

is the spectrum singular functor right adjoint to 7,. Since &.(R, —) is right adjoint to
R ®—, the result now follows from
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Claim. There is a natural isomorphism

Eno(R, =)~ 08,28 0 (R, —).
The left side sends an E, ring Q to

[7] = b (R, F(A(R)+, Q).

The right side sends Q to
(] = Top(A(n), € (R, D))

The required natural isomorphism is the adjointriess homeomorphism
Eo(R, F(A(n)1, Q) = Top(A(n), (R, Q).

It remains to prove that the multiplication of THH(R) is induced by the folding map
S'uS!' — S Since

R®-:90p — & and —®8' 6 o Ex
are left adjoints they preserve sums. Hence there are canonical E,, isomorphisms
(R*R)® S' = THH(R)*THH(R) = Rx(S' U S1)
and the multiplication on THH(R) is defined by either folding map
RxR—Ror S'US' - 58! ]
4.4. There is also an internal realization
G:65 — 6w
sending a simplicial E,, ring spectrum R, to the coend of the functor
DP XA\ — E, ([m], [n]) — Ry ® A(n).

in €. Applying the universal properties of the coend construction and of the tensor
in £ it is easy to see that the singular functor S; is right adjoint to 73. Hence 7> and
T; are naturally isomorphic.

4.5. Proposition. The topological realization in the sense of [5] of a simplicial E.
ring spectrum R, is naturally isomorphic in & to the internal realization in the
sense of (4.4). In particular, THH(R) is the coend in &, of

AP XA 8, ([m],[n]) = THHR)m ® A(n).
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5. Maps of Bokstedt type

Let X be a topological space and R and T be E., ring spectra. Since R®X and
RAX, are the X-parametrized coproducts of copies of R in & and S, respectively,
there are X -parametrized families of natural E,, inclusions {i,:R— R®X}, respec-
tively, spectrum level maps {j,:R— RAX,} having the following universal property:
given an X-parametrized family of E,, homomorphisms f;:R— T, respectively, an
X -parametrized family of maps of spectra g, : R — E there is a unique E,, homomor-
phisms f:R®X — T such that f oi, = f; for each x € X, respectively, a unique map
of spectra g: RA X, — E such that goj, =g, for each x € X.

If we take f, =idg for all x € X we obtain an E,, homomorphisms py :R@X — R
such that py o, =idy.

Considering the i, : R— R ® X as maps of spectra we obtain an induced map

MR,X):RAX, 5 R®X

satisfying A(R,X)o j, =i, x € X. Since i; admits a retraction, we have
5.1. If R is not contractible and X is not empty A(R,X) is essential.
The universal property also implies

5.2. The following diagram commutes:

MRXINY, MRRX,Y)
RAXHAY, ——— " RQX)NY, ——  (RQX)QY

MRXXY)
RAX x Y)* - R®(X x Y)

Specializing to X =Y =S' we obtain a commutative diagram

o RAy4+
(RASLYASY RA(S' xS8'), —— RASL
MR, 8" )ASL AR,8'xS") MR,SY)
1 | RS 1 1 = 1 1y MRS 1
R®SHANS, —— (R®S)®S' — RS x§') — RS

where y is the multiplication of S'. Hence,

53. AR,5"):RASL—R®S! is §'-equivariant.
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Given a map f:RA X, — T of spectra such that each f;= foj,:R— T is an E,
homomorphism, the f; induce a unique E,, homomorphism f:R ® X — T such that
foix:j; for all x€X. Since f,=foi,=focA(RX)oj, and f, = f oj, we conclude

5.4. Let X be a topological space and R and T E, ring spectra. Given a map of spectra
S iRAX, — T such that each foj, is an E,, homomorphism there exists a unique
E homomorphism f:R® X — R such that f o (R, X)=f.

5.5. For each x € X we have an R-module structure on R ® X defined by

ixid multipl
R+R3X) L (ROX)«(ROX) —— RS X,

Clearly, this defines an R-algebra structure on R® X turning i, into an R-algebra ho-
momorphism. This proves the first part of Theorem H. The second part is a
well-known consequence of the first part [1, IL6.1). It is straightforward to show that
this structure is equivalent to an E., algebra structure as defined in Definition 6.6
below.

6. Extensions of the result and final remarks

6.1. Definition. Let R be an 4., or E,, ring spectrum, K a unital right R-module and
L a unital left R-module with structure maps &x and &;. The reduced smash product
over R of K and L is the coequalizer in S-#od,

&k
K*R«L———= KL -5 K xxL.
&

6.2. If K is a unital Q-R-bimodule, K xg L is a unital Q-module since Q « -preserves
coequalizers by Lemma 2.14,

6.3. If R is an E,, ring spectrum any unital R-module is an R-bimodule in the obvious
way and «z defines a bifunctor

R-Hod, x R-#od, — R-Hod,

6.4. Proposition. Let Q and R be A, or E, ring spectra, K a unital right O-module,
L a unital Q-R-bimodule and M a unital left R-module. Then there are natural isomor-
phisms

(1) (K*QL)*RM = KﬁQ(L *RM),

(2) Rxg M = M,

(3) if R is an E, ring spectrum, then L«x M = M %z L.
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Proof. (1) follows from the fact that K «p — preserves coequalizers and that two
coequalizers commute. (3) is trivial, and (2) holds because

uxid ¢
R*ReM —Z3RxM > M
id % &

is a coequalizer by [12, VL. 7]. O3

6.5. Corollary. If R is an E., ring spectrum R-#od, is a symmetric monoidal cate-
gory with %z as tensor product and R as unit.

6.6. Definition. Let R be an E, ring spectrum. An (E, respectively) Ao, R-algebra
is a (commutative) monoid in the symmetric monoidal category R-.#od,.

We are interested in the commutative case. Let Ez-o/lg denote the category of
E,, R-algebras and R-algebra homomorphisms. We topologically enrich Ez-2/1g in the
obvious way so that the forgetful

U:Eg-slg— R-#od,
is continuous. U has a continuous left adjoint
F:R-Mod, — Ep-sd1lg

defined as follows: let & denote the category of finite sets n={1,...,n} n > 0 with
0=¢ and injections. For each M € R-#od, define a functor

Fy:¥ —R-AMod,
by Fy(n)=M**" with M**® =R and for each ordered injection f:m —n by
Fy(f): M**™ = Ny %gNy *g - - - *g Np — M*",

where Ny =M if k €im(f) and Ny =R otherwise. « is defined by the identity on M
and by the unital structure on M

RERxS — R+M 25 M
Fy applied to a permutation is the obvious morphism. We define
F(M)= colim Fyy

in the category R-.#od,. Since Fy is a connected diagram this colimit is created in
S-#od, and since M xr — preserves colimits of connected diagrams the concatenation
of finite sets induces a multiplication on F(M) making it a commutative monoid in
R-o/1g. Extending the proofs of Section 3 to R-algebras and modules over R-algebras
we obtain
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6.7. Theorem. Ep-o/lg is topologically enriched and contains all indexed limits and
colimits. All indexed limits are created in SU.

Next let R be an E, ring spectrum, 4 a commutative R-algebra and M an 4-module.

6.8. Definition. The topological Hochschild homology THHR(A; M) of A with coefhi-
cients in M is the topological realization in % of the simplicial R-module

[n] = A" wg M
with the Hochschild structure maps.
As in Section 4 we obtain

6.9. Theorem. Let R be an E, ring spectrum and A an E, R-algebra. Then there is
a natural isomorphism in Ex-5/lg

THHr(A) 2 AR S
and the multiplication of THHg(A) is induced by the folding map S' LI S' — S'.

Elmendorf et al. [7] are contemplating another variant of a category of S-modules
[8]). To distinguish it from Definition 2.3 we call its objects strong S-modules.

6.10. Definition (Elmendorf and May [8]). The category sS-.#od of strong S-modules
is the subcategory of S-.#od of all objects M for which the map S As M — M is an
isomorphism.

sS-Hod is a coreflective subcategory of S-#od in the sense of [12, IV. 3] with
the continuous coreflector

S-Mod — sS-#H#od, R— S Ns R.
Hence, [12, IV. Excercise 3.7].

6.11. Proposition. As a topologically enriched category sS-#od contains all indexed
colimits and they are created in S-#od. It also contains all indexed limits which are
obtained from the indexed limits in S-.#od by applying the coreflector.

Note that for strong unital S-modules Ag coincides with » so that the category
S-#od, is redundant: we can work in sS-#od. 8y has to be replaced by sé,
the subcategory of E,, ring spectra which are strong S-modules. If R is an E,, ring
spectrum then S Ag R is an E., ring spectrum in sé&,, which is weakly equivalent to
R. Hence, we may restrict our attention to sé... Also observe that s&,, has the same
indexed colimits as &,. If we now replace » by Ag throughout Sections 3 and 4 and
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the singular functor S, : o — £ by the functor
58s —SELP, O ([n] — S As F(A(n)y, Q))

all proofs go through in this setting.

A final word to the notion of unital R-module. In [7, Ch. II] Elmendorf et al.
showed that A, and E., ring spectra R are S-modules with structure maps 7:S — R
and p:R Ag R— R such that p is associative (and commutative in the E,, case) and
that

idAn

R nAid

SN +R AR ¢

Lu

commutes. A module over an Ay, or E, ring spectrum R is an S-module M with a
structure map &:R Ay M — M satisfying the obvious associativity and unit conditions.
Let R-.#od denote the category of such R-modules and R-module homomorphisms. It
is not difficult to show that our category R-.#od, of unital R-modules is isomorphic
to the category R-.#od under R.
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