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Abstract 

We prove that the topological Hochschild homology spectrum THH(R) of an E, spectrum 
R is the S’-indexed sum of copies R in the category of E o5 ring spectra. As a consequence, we 
obtain a natural S’-action and compatible power operations on THH(R). In addition, THZf(R) 

admits an A ,-comultiplication making it an A, Hopf algebra spectrum over R. @ 1997 Elsevier 
Science B.V. 

AMS Classzjication: 55P42; 19DlO; 16E40 

1. Introduction and main results 

Around 1985 Biikstedt introduced the notion of Topological Hochschild Homology 

THH of a functor with smash products [2] (for a published version see [4]). The 
category of such functors is topologically enriched. In a conversation Biikstedt pointed 

out that if this category were tensored THH(R) ought to be the tensor R @ S’ in the 

commutative case. 

Recall that a category is topologically enriched if the morphism sets are topologized 

such that composition is continuous. In a topologically enriched category we have the 
notions of indexed limits and colimits. 

1.1. Definition. Let X and W be topologically enriched categories and let F : % -+ 
Fop, G : X”P -+ Fop and X : X -+ H be continuous functors. The limit of X indexed 
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by F is an object 1imFX in %9 together with a natural homeomorphism 

98 (B, 1imF X) 2 Funct(X, Yop)(F, S!l(B,X( -))), 

where Funct(S?, Fop) denotes the category of continuous functors X + Fop. The 

colimit of X indexed by G is an object colimoX in 98 together with a natural homeo- 

morphism 

9#(ColimGX,B) EFunct(XXoP,50p)(G,91(X(-),B)). 

If F and G are the constant mnctors to a point we get the usual definitions of limits and 

colimits with the additional requirement that the natural bijections be homeomorphisms. 

If X consists of one object and its identity and F and G take the space K as value 

while X takes B E ob98 as value, we denote 1imFX by BK and colimox by B ~$3 K. 

1.2. Deli&ion. If B 63 K exist for all B E .?2? and K E Fop, B is called tensored. If 

all BK exist it is called cotensored. 

In view of Biikstedt’s remark and its implications tensored and cotensored structures 

are our central concern. They have the following universal property. 

1.3. Let 99 be a topologically enriched tensored and cotensored category. Then for 

B1, BZ E 93 and K E Fop we have natural homeomorphisms 

This shows that B 8 K is the K-indexed sum of copies B if K is discrete and BK 
the K-indexed product. Hence, B @J K and BK are topologically parametrized versions 

of K-indexed sums and products. 

From (1.3) we immediately deduce 

1.4. For B E 3 and K,L E Fop we have natural isomorphisms 

(B@K)@LSB@(K XL), 

(BK)L %‘BKxL, 

The central idea of Biikstedt’s definition of THH is to take the classical definition of 

Hochschild homology, replace ring by a suitable notion of ring spectrum and the tensor 

product by the smash product. At that time there was no known category of spectra 

with an associative, commutative and unital smash product. So Bokstedt introduced 

unstably defined functors with smash products whose structures allow a stabilization 

procedure, and a fairly small coherence machinery took care of a coherently homotopy 

associative, commutative and unital smash product of such functors. 
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Recently Elmendorf et al. [6,7] discovered a category of spectra which admits a 

strictly (up to natural isomorphisms) associative, commutative and unital smash product 

making it into a symmetric monoidal category. Moreover, it has the pleasant property 

that the A, ring spectra and E, ring spectra, which are structured by the linear 

isometry operad S, are exactly the monoids, respectively, commutative monoids in 

this category. Hence, it is very simple to define THH in terms of this smash product 

* (see Section 4), and therefore we will work in this setting. It has not been established 

yet that this definition of THH agrees with the one of Biikstedt, but this is very likely 

to be true [15], at least for CW ring spectra [7, Ch. I]. 

The restriction to _5?-structured ring spectra is not substantial: recall from [13] that 

an -J.&z operad is a C-free operad V such that each U(n) is contractible. If GZ is an 

operad without an action of Z,, on Q?(n) and each %(n) is contractible, we call % an 

A, operad. Our canonical example is the linear isometries operad Y: let 9 denote the 

category of real inner product spaces and linear isometries. Let %! % (w” be an object 

in 9, then Y(n)=4(@ @n f!2) defines an oc) p , E o erad whose structure maps are given 

by composition. If we forget the action of Z, on %@“, _Y reduces to an A, operad. 

1.5. Definition. An A, ring spectrum consists of a spectrum R, an A, operad % 

augmented over _Y and structure maps 

n > 0, defining an action of V on R. Here R” is the n-fold external smash product (see 

Section 2 for a recollection of the basic definitions). If W is an E, operad augmented 

over 55’ (as E, operad) and the [, are &equivariant, R is an E, ring spectrum. 

Let R be an A, or E, ring spectrum structured by an operad %?. Let C denote its as- 

sociated monad [lo, VII.31. Since %? augments over 2 the monad C acts on the monad 

L associated with the operad dp. Applying the fimctorial two-sided barconstruction we 

obtain maps of ring spectra 

B(L,C,R)+B(C,C,R)--+R, 

which are weak equivalences and homomorphisms with respect to the C-structure. 

Moreover, the left ring spectrum is structured by the linear isometry operad (for the 

two-sided barconstruction on space level and its properties see [13, Section 91. The 

spectrum level construction is similar, details will appear in [7]). 

Hence, there is a functorial way to replace each A, or E, ring spectrum by a 

weakly equivalent one structured by the operad Y. This allows the following: 

1.6. Convention. A, or E, ring spectrum will always mean a ring spectrum structured 

by the linear isometry operad. 

Let gW denote the category of E, ring spectra and homomorphisms. Our main 

results are 
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Theorem A. 8, is topologically enriched in a canonical way and contains all indexed 
limits and colimits. In particular, 8, is tensored and cotensored. 

A different proof that go3 is tensored and cotensored will appear in a joint paper by 

Mike Hopkins and the fnst author. 

Theorem B. For E, ring spectra R there is a natural isomorphism in 8, 

THH(R) Z R @ S’ . 

In particular, THH(R) is again an E, ring spectrum and its multiplication v: 

THH(R)+ THH(R) -+ THH(R) is induced by the folding map S’ U S’ -+ S’. 

This result has a number of interesting consequences. We include just the most 

straightforward ones; others will be studied in a separate paper. 

Since R @ S’ is a continuous functor in both variables we have a homomorphism of 

topological monoids 

J : Yop(S’, S’) + c&,( THH(R), THH(R)) 

natural in the 8, ring spectrum R. The adjoint of the multiplication S’ x S’ + S’ also 

defines a homomorphism of topological monoids 

p : s’ + Yop(S’,S’). 

The composite il o p = oi defines an S’-action on THH(R) and we obtain 

Theorem C. For an E, ring spectrum R there is an S’-action on THH(R) through 
homomorphisms, i.e. a homomorphism of topological monoids 

oi : S’ + c?,( THH(R), THH(R)). 

There are also obvious power operations 

@’ : THH(R) --) THH(R) 

of the types considered by Loday [ 1 l] and McCarthy [ 141 defined on S’ by 

(pr(e2nir) = e2rriN, y E z. 

Since the product of THH(R) is given by the folding map S’ US’ -+ S’ the following 

result can easily be checked by considering the S’ factor. 

Theorem D. For each E, ring spectrum R there exist natural power operations 

@’ : THH(R) -+ THH(R) 
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one for each r E B satisfying 
(i) Do factors through the natural monomorphism 

tR:R=R@{l}+THH(R) 

induced by the inclusion { 1) C S’. It defines a retraction of 1~. 
(ii) @’ = id. 

(iii) @’ 0 Qs = Ws. 

(iv) Each W is multiplicative, i.e. a homomorphism of E, ring spectra. 
(v) Computability with the S’-action. The following diagram commutes: 

141 

THH(R) @ S’ a THH(R) 

/@%@ /@ 

THH(R) @ S’ -% THH(R) 

Here 01 denotes the adjoint of 6. 

THH(R) with its S’-action has an obvious universal property: 

Theorem E. The natural monomorphism iR : R = R @ (1) + THH(R) has the following 

universal property: given an E, ring spectrum R’ with an S’-action through homo- 

morphisms and a homomorphism f : R -+ R’ then there exists a unique S’-equivariant 

homomorphism 7 : THH(R) + R’ such that 7 o iR = f. 

By (1.3) -@S’:b,-,b, is left adjoint to (-)s’ : 8, + ~9~. We deduce 

Theorem F. THH(-) : 8, + 8, p reserves colimits. In particular, since * is the 
coproduct in goo, 

THH(RI * R2) Z THH(R,) * THH(R2). 

In [2] B6kstedt defined a map 

1: R A S; -+ THH(R), 

which plays an important role in the calculations of [3]. The existence of A is obvious 

in our set-up. Let x_ : { *} + S’ denote the map sending * to x E S' . 

Theorem G. For any E, ring spectrum R there is a natural spectrum level Biikstedt 

map 

A:RM:+THH(R) 



142 J. McClure et al. I Journal of Pure and Applied Algebra 121 (1997) 137-159 

with the following properties: 
(i) 1 is S’-equivariant, 

(ii) if T is an E, ring spectrum and f : R A S: + T a map of spectra such that 

f o(RAx_+):R=RA{*}++RA+T 

is an E, homomorphism for each x E S’, there is a unique E, homomorphism 

f : THH(R) --+ T such that f = f o ;1. 

Theorem H. For each x E S’ the E, homomorphism 

defines an E, R-algebra structure on THH(R). Hence, tfR is an Eilenberg-Ma&me 
spectrum THH(R) is a product of Eilenberg-MacLane spectra. 

Let *R be the smash product over R as defined in Definition 6.1 below. If A and B 
are E, R-algebras A *R B is the pushout in 8, of 

B FA*RB 

(the proof is the same as the usual one). Give THH(R) the R-algebra structure from rR. 

Then the projection 

THH(R) * THH(R) + THH(R) *R THH(R) 

is induced by the map S’ I_ S’ + S’ V S’ with 1 E S’ as base point. The algebra 

multiplication is given by the based folding map S’ V S’ + S’ . 

The pinch map S’ -+ S’ V S’ now defines an A, comultiplication 

THH(R) + THH(R) *R THH(R) 

with (homotopy) counit induced by S’ + *, and we obtain 

Theorem I. If R is an E, ring spectrum THH(R) has an A, Hopf algebra structure 
over R. 

1.7. Remark. It might be worth noticing that there is a simplicial E, ring spectrum 

E, with EO = R and E,, the n-fold application of THH to R. Its realization is R C3 CP”. 

The paper is organized as follows. In Section 2 we recall the basic definitions and re- 

sults from [6,7, lo] which we will use in our constructions and add a few facts left out 
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in these papers. Section 3 provides the proof of Theorem A. Topological Hochschild 

homology will be defined and studied in Section 4 which includes the proof of Theo- 

rem B. Section 5 deals with the Biikstedt map in a more general context. The paper 

ends with a section on the extension of the definition of topological Hochschild ho- 

mology to E, algebras over E, ring spectra and some remarks on possible variations 

due to changes of the frame work provided by the work of Elmendorf et al. [7] 

2. Spectra and (unital) S-modules 

Throughout this paper Fop denotes the category of compactly generated weak 

Hausdorff spaces and Fop* its based version. Limits, colimits and function spaces 

are taken in these categories. 

We will work with coordinate-free spectra in the sense of [lo]. Given a universe, 
i.e. real inner product space % 2 EY, a a-indexed prespectrum D assigns to each 

finite-dimensional subspace V of @ a based space DV and to each orthogonal pair 

V, W a structure map 

av,w:DV42WD(V@ W) 

satisfying the obvious associativity condition. D is a spectrum if the ~V,W are homeo- 

morphisms. A map of %-indexed (pre)-spectra f : D + D’ is a family f V : DV -+ D’ V 
of based maps preserving the structure. We denote the resulting categories of prespectra 

and spectra by 9% and Y%, respectively. Both categories are topologically enriched by 

giving their morphism sets from D to D’ the subspace topology of nv Yop,(DV, D’V). 
For a prespectrum D and a based space K the assignments V H DVA K and V H 

Yopp*(K, DV) define the small smash product and the small function spectrum functors 

9% x Fop, +94X!, (D,K)++DAK, 

9% x YoP$~ + 942, (D, K) H F(K, D). 

The small function spectrum hmctor restricts to a functor 

9% x 9-op;p + 9%. 

For the small smash product we use the composite 

9% x Fop* -+.9’@+_,42!, (E,K)wL(EAK), 

where L is the spectrification [lo, p. 131. In abuse of notation we again write E A K 
for L(E A K). 

2.1. Proposition (Lewis et al. [lo, 1.3.3; 1.3.41). Let E, E’EY%, K,L~5op,. 
(1) There are natural homeomorphisms 

9’@(E AK, E’) 2 Yop*(K, P&(E, E’)) 2 Y%(E, F(K, E’)). 



144 J. McClure et al. IJournal of Pure and Applied Algebra 121 (1997) 137-159 

(2) There are natural isomorphisms 

Er\S’=E, (Er\K)/\L=Er\(KAL), 

F(S”, E) ” E, F(K AL, E) 2 F(K,F(L, E)). 

To obtain smash products between spectra we note the existence of an associative, 

commutative and unital external smash product functor 

9% x 9@‘4q@!%‘), (E,E’)++EAE’ 

induced by the spectrification of the functor defined by the formula (E A E’)( V @ V’) = 
EVA E’V’. To obtain an internal smash product in 9% we apply the twisted half 

smash product of [lo]: let 9 be the topologically enriched category of universes and 

Yop/Y(G, W) the category of spaces over Y(@,%‘), then 

2.2. Proposition (Lewis et al. [lo, VI.l.l; VI.1.5; VI.3.11). There are functors 

Jrop/9(%!, %V) x 9% 4 Y%‘, (A,E)++A# E, 

9op/Y(4Y, %!‘)“P x Yf??l’ 4 Y%, (A,E)++F[A,E), 

such that, for AEYo~/JJ(%!,@‘), B~Yop/4(@‘,%!“), EEY%, E’E 9%’ and K E 

Fop,, 
(1) there is a natural homeomorphism 

Y%!‘(A # E, E’) g 9%(E,F[A, E’)), 

(2) Ab( E preserves colimits in both variables, F[A,E’) preserves limits in E’ and 
converts colimits in A to limits, 

(3) there are isomorphisms 

A# (EAK) 2 (Ap< E)AK and F(K,F[A,E’)) 2 F[A,F(K,E’)), 

(4) for B x A -+ _%(%!‘, W) x Y(%, %‘)z .Y(%!, W’) we have a natural isomorphism 

We could now define an internal smash product in 9% by the correspondence 

(E,E’)++Y(%!%,%)# (EAE’). 

By the geometry of the spaces 4(%!,%‘) this internal smash product is coherently 

homotopy associative, homotopy commutative and homotopy unital. The coherence 

theory makes any construction involving this smash product cumbersome. 
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Recently, Elmendorf et al. [6,7] managed to incorporate the coherence directly into 

the definition to come up with a smash product on a sufficiently large category of 

spectra with much better properties: 

2.3. Let Y(n) = Y(W’, %) denote the linear isometry operad on a. An S-module is a 

spectrum M with an _Y( 1 )-action, i.e. A4 comes equipped with a map 5 : U( 1) MM + M 

such that 

commute (y is composition in the operad 9). A map of S-modules is a map f : A4 -+ N 

of spectra respecting the Z’( 1 )-action. 

Recall that the stable categories are obtained by formally inverting weak equiva- 

lences, i.e. maps of spectra f : E + E’ for which each f(V) : E( V) + E’( V) is a weak 

equivalence. 

2.4. Proposition (Elmendorf et al. [6, Theorem 1; 7, Ch. I]). The category S-&od 
of S-modules is complete and cocomplete, with both limits and colimits created in 
Y@. The forgetful functor S-A?od + 9% induces an equivalence of the associated 
stable categories. 

We need a slightly stronger version of the first part of (2.4) which is implicit in 

[lo]. Let F : %? --) Y% be a diagram of spectra. The spectrum 1imF is defined by 

(lim F) (V) = lim F( -) ( V). The same procedure for colimits produces a prespectrum 

which we have to spectrify. By [lo] spectrification is a continuous mnctor. Since both 

fimctors yop*(-, Y) and yop*(X, -) are continuous, we have 

2.5. Proposition. Let F : V + 9% be a diagram of spectra. Then there are natural 
homeomorphisms 

Y%(colim F, E) Z lim Y%(F, E), 

9??l(E, lim F) g lim P%(E, F). 

And, by restricting the morphism spaces to their subspaces of maps of S-modules, 
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2.6. Addendum to (2.4). Let F : GT? -+ S-&od be a diagram of S-modules. Then there 

are natural homeomorphisms 

S-_&!od(colim F, M) 2 lim S-.kod(F,M), 

S-Jr’od(M, lim F) E lim S-&od(M, F). 

As an immediate consequence we have 

2.7. Proposition. As a topologically enriched category 9% contains all indexed limits 
and colimits. 

Proof. By (2.1) 9% is tensored by (E,K) HE A (K+) and cotensored by (E,K) H 
F(K+,E). Together with (2.5) this proves the claim [9, (3.70)]. 0 

To obtain the same result for S-.Nod we need to know that it is tensored and 

cotensored. This is a consequence of the following variant of a result of Linton. 

2.8. Lemma. Let T : Sf? + Gf? be a continuous monad on a topologically enriched cat- 
egory V and let WT be its category of algebras. Then 

(1) the forgetful functor U : WT ---f V creates all indexed limits, 
(2) tfqT has continuous coequalizers (in the sense of (2.5) (2.6)) and V is tensored, 

then %ZT contains all indexed colimits. 

Proof. (1) is the topologically enriched version of [12, VI.2, Excercise 21. If we denote 

the free functor %Z + eT also by T, then T is left adjoint to U, hence preserves indexed 

colimits. In particular, T( C 18 K) = (TC) @ K for K E Top. Let p : T o T --+ T denote the 

multiplication of T. Then for X E VT with structure map 5 : TX -+X 

is a coequalizer in %ZT by Beck’s tripleability theorem [12, VI.71. Hence the coequalizer 

of 

/IX@JK 

TTX@K; TX@K 
T&BK 

satisfies the universal property of X 6~ K. The result (2) now follows [9, (3.70)]. •i 

By (2.8) we can apply the proof of the corresponding result from [7, Ch. I] to obtain 

2.9. Proposition. As topologically enriched category S-&!od contains all indexed lim- 
its and colimits, and both are created in 9%. 
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For S-modules M and N we define the smash product over S to be the coequalizer 

in 9% 

(T(2) x 9(l) x Y(1)) K (MAN) ; 532) K (M/\N)+M&N. 
-82)xtMAtN 

2.10. Proposition (Elmendorf et al. [6, Theorem 1; 7, Ch. I]). The smash product 
over S is an associative and commutative btjiinctor, and there is a natural map 

S AsM -+M which is a weak equivalence if M is a CW spectrum and an isomor- 
phism tf M = S. There is also a functorial function spectrum Fs(M, P) of S-modules 

and a natural homeomorphism 

S-Aod(MAs N, P) g S-&od(N, Fs(M, P)). 

To obtain a smash product which is also unital Elmendorf et al. consider the category 

S-.Hod, of S-modules under S. Its objects are S-modules M with a map of S-modules 

q : S +M. Such an object is called unital S-module. 

2.11. Proposition. As a topologically enriched category S-&od, contains all indexed 
limits and colimits. Ordinary colimits of connected diagrams and all indexed limits 
are created in 9%. 

Proof. M H M V S is a monad on S-Aod whose algebras are precisely the unital S- 

modules: if M is an algebra with structure map 5 : M V S + M then M is unital via 

S +M V S --‘M; conversely, if M is unital, q : S +M, an algebra structure map is 

defined by 

MVS 
id V 9 fold 

-MvM-M. 

Hence, the forgetful S-Mod, -+ S-Aod creates all indexed limits. Now let F : % -+ S- 

Aod, be a diagram in the usual sense, co1 F its colimit in S-A?od and co1 S the colimit 

in S-A!od of the constant W-diagram on S. Then colim F in S-JXod, is the pushout 

in S-.&od of 

COlS A s 

Hence, S-A!od has arbitrary indexed colimits by (2.8). If %? is connected S = co1 S 

and hence co1 F = colim F. 0 

2.12. Definition (Elmendorf et al. [6, Section 2; 7, Chap. 11). Let M and N be 

unital S-modules. The reduced smash product M t N is the pushout in S-A!od 
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(M&S);/(SnsN) -MAsN 
I 

1 
MVN - 

with the structure map SZSS/\S S+MAsN-+M+N. 

2.13. Proposition (Elmendorf et al. [6, Section 21). S-Mod, is a symmetric monoidal 
category with tensor product * and unit S. Its monoids and commutative monoids 
are precisely the A, and E, ring spectra, respectively. 

Although M+ - does not preserve sums in the category S-Jt’od, we note for later use. 

2.14. Lemma. M+ - preserves colimits of connected diagrams in S-&!od,. 

Proof. By (2.9) and (2.11) colimits of connected diagrams are created in S-&‘od. 
For an S-module K the functor K V - : S-&od -+ S-&‘od preserves colimits of con- 

nected diagrams while K AS - : S-&od -+S-Mod preserves all colimits because it is a 

left adjoint (2.10). The result follows since colimits commute with pushouts. 0 

3. Ring spectra and R-modules 

Before we start with the proof of Theorem A we need to consider R-modules. 

3.1. Definition. Let R be an A, or E, ring spectrum. A unital (left) R-module is a 

unital S-module M with a structure map 5 : R +M -+ M in S-Mod, such that 

RlrR+M y*M +R+M S+M q*M ,R+M 

commute, where p : R * R -+ R is the multiplication and q : S -+ R the unit. A map of 

unital R-modules is a map of unital S-modules respecting the R-structure. 

3.2. Proposition. The category R-&?od, of unital R-modules is topologically enriched 
and contains all indexed limits and colimits. Colimits of connected diagrams and 
arbitrary indexed limits are created in S-Aod,. 

Proof. M H R *M is a continuous monad on S-&od, with unit M % S *M -+ R *M 
whose algebras are by definition precisely the unital R-modules (the module structure 
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maps are the algebra structure maps of the monad and vice versa). Hence, the forgetful 

R-Aod, -+ S-.&od, creates all indexed limits (Lemma 2.8(l)). Now let F: V + R- 
A!od, be a connected diagram and Q E S-A’od, its colimit in S-Aod,. Since R* - 
preserves colimits of connected diagrams in S-Jtod, (Lemma 2.14) Q is a unital R- 
module with structure map 

c&:R*Q= colim(R*F)-+colimF=Q. 

It is easy to check that Q has the topologized universal property of a colimit in R- 
Mod,. Since coequalizers are colimits of connected diagrams the result follows from 

Propositions 2.8 and 2.11. 0 

Let 8, be the category of E, ring spectra and their homomorphisms. As always 

before we topologically enrich ~9, by giving 8,(E, E’) the subspace topology from 

P%(E,E’). 

3.3. Proposition (Elmendorf et al. [6, Proposition 21). E * E’ is the sum of E and E’ 
in 6&, and the folding map E * E -+ E is the multiplication of E. 

3.4. Proof of Theorem A. Let L : 9% + 9% be the monad associated with the linear 

isometry operad 9. Then L is continuous and c.& its category of algebras [lo, VIII. 

31. Hence, the forgetful 8, + 9% creates all indexed limits (Lemma 2.8( 1)). To 

show the existence of indexed colimits we have to estabish the existence of continuous 

coequalizers (Lemma 2.8(2)). So given 

f 
Q :R 

9 

in 8,. Let jj denote 

R*f 

the composite 

fl :R*Q- R+R% R 7 

where PR is the multiplication of R. Then fi is a homomorphism of R-modules. Take 

the coequalizer T in R-Aod, 

fi 
(3.5) R*Q- -----+R&T. 

91 

We show that T is the coequalizer off and g in 8,. Since T* - preserves coequalizers 

in R-Aod, the spectrum T * T is the colimit in R-Aod, of 

/I +R+Q 
RtQ*R*Q :R*R+Q 

91 l R+Q 

(3.6) R+Q+fl 
II 

R*Q*gf R*fl 
Ii 

R*cn 

11 f\ +R 11 
R+Q*R{R*R 

gl*R 
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and the colimits structure maps are induced from 

t+t : R+R + T*T 

Since R is a commutative monoid in 8, the following diagram commutes (r is the 

interchange): 

R+Q*R*Q R*f +R*f > R+R+R*R aR*R 

I 

J. 
R*R:Q*Q R*R*j’*/ R+RtR*R 

Hence, fi and correspondingly gt are E, homomorphisms, and (3.6) is a diagram 

in 8,. The folding maps, which define the various multiplications, induce a map of 

diagram (3.6) to T, giving rise to an R-module homomorphism pr : T*T -+ T satisfying 

pr 0 (t+t) = t 0 PR. 

In particular, T is an E, ring spectrum and t an E, homomorphism. Now given an 

E, homomorphism h : R --) U such that h of = h o g then 

h o /iR o (R+ f) = pu o (h*h) 0 (R* f) = pu 0 (h+(h 0 f )) = h o /iR o (R*g). 

Hence, there is a unique R-module homomorphism 

q:T-tU 

such that got = h. Since h*h induces a map of (3.6) to U*U, it follows that q is 

an E, homomorphism. Conversely, given an E, homomorphism q : T + U such that 

q o t of, = q o t o f2 as R-module homomorphisms then they agree as E, homomor- 

phisms, and hence q o t o f = q o t o g because R*Q is the sum in 8, and PR is the 

folding map. Hence, the natural homeomorphism 

Equalizer (R-Aod,(R, U) : R-.Mod,(R+Q, U)) s R-A?od,(T, U) 

s: 

restricts to the subspaces of E, homomorphisms 

f* 
Equalizer (c%~(R, U) 7 &dQ, W> = &AT, W. 0 

cl* 
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4. Topological Hochschild homology 

4.1. Definition. Let R be an A, ring spectrum and A4 be an R-bimodule (defined anal- 

ogously to (3.1)). The topological Hochschild homology THH(R; M) of R with coeffi- 

cients in A4 is the topological realization in 9% of the simplicial spectrum THH(R; M), 

[n-j~R*... *R+M = R*“+M 

(n copies of R) with the usual Hochschild structure maps 

R*“- ’ l [, 

d’: R*“+M - R*“-‘+M, 

d’ : R*“*M 

R*“-‘-‘*Pc+R*#-’ 

> R*“-‘*M, O<i<n, 

CR*“-’ *&I 0 ‘T 
d” : Ren*M > R*“-%M, 

R*“-’ q*R’ *A4 

s’ : R*“*M A R*“+‘*M, 0 5 i 5 n, 

where .B : R*R + R is the multiplication, q : S + R the unit, 5, and <, the left and right 

actions of R on M and r the cyclic permutation 

z:R*... +R*M + R+ . . . +R+M*R. 

If M = R we write THH(R) for THH(R; R). 

The topological realization of a simplicial 

of the fimctor 

spectrum E. in 9% is the coend in 9% 

A”px n +9%, ([ml, PI) HE, A W)+, 

where A(n) is the standard n-simplex [5]. Since geometric realization commutes with 

any monad in 9% (cf. [ 13, Theorem 12.21 for the space-level version; the spectrum- 

level argument is similar, cf. [7, Ch. VI]), the geometric realization of a simplicial Em 

ring is again an E, ring. In particular, if R is an E, ring and hence a commutative 

monoid in S-.&!od, the simplicial spectrum THH(R). lives in 8, so that THH(R) E 

8,. Hence, we have an endofunctor 

THH:&,+&,. 

Let 5’: = A( l)./aA( 1). denote the simplicial l-sphere and A? : [n] + [l] the map de- 

termined by (fi)-‘(1) = {i,...,n}. Then 
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The boundary and degeneracies are 

d’xn = 

i 

fr_+i’ for j <i, 

fl+n+l for j 2 i, 

sjf;! = 

{ 

fr_+/ for j < i, 

A!+1 for j 2 i. 

Since SA = A([n], [l])/(f{ ~fi+i), and t is the coproduct in gW, we have the ring 

spectrum version of a well-known fact of classical Hochschild homology (e.g. see [ 11, 

Section 31). 

4.2. If R@S! denotes the simplicial object [n] --) R @IS: in 8, then THH(R). = 

R@Sf. 

Theorem B is a consequence of 

4.3. Proposition. For any 8, ring R the following diagram commutes up to natural 
isomorphism 

Fop 
bW-_) 

- &o 

where we let Ti denote the respective topological realization functors. 

Proof. Consider the diagram 

where St is the topologized singular functor right adjoint to Tl and 

is the spectrum singular functor right adjoint to Tz. Since &“(R, -) is right adjoint to 

R @J -, the result now follows from 
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Claim. There is a natural isomorphism 

The left side sends an E, ring Q to 

bl H &dR,fYW)+, Q>>. 

The right side sends Q to 

inI +-+ you, &AR, Q>>. 

The required natural isomorphism is the adjointness homeomorphism 

&JRF(&n)+, Q>> = roe, J&AR, Q>>. 

It remains to prove that the multiplication of THH(R) is induced by the folding map 

S’ U S’ + S’. Since 

are left adjoints they preserve sums. Hence there are canonical E, isomorphisms 

(R+R) @IS’ 2 THH(R)+THH(R) 2 R*(S’ U S’) 

and the multiplication on THH(R) is defined by either folding map 

R*R+R or S’US’--+S’ 0 

4.4. There is also an internal realization 

sending a simplicial E, ring spectrum R. to the coend of the fimctor 

in 8,. Applying the universal properties of the coend construction and of the tensor 

in 8, it is easy to see that the singular functor SZ is right adjoint to &. Hence T2 and 

i’$ are naturally isomorphic, 

4.5. Proposition. The topological realization in the sense of [5] of a simplicial E, 
ring spectrum R. is naturally isomorphic in 8, to the internal realization in the 

sense of (4.4). In particular, THH(R) is the coend in 8, of 

nap xn +fz&, WI, bl) ++ TfWR), 8 A(n). 



154 J. McClure et al. I Journal of Pure and Applied Algebra 121 (1997) 137-159 

5. Maps of Biikstedt type 

Let X be a topological space and R and T be E, ring spectra. Since R 8 X and 

R AX+ are the X-parametrized coproducts of copies of R in 8, and 972, respectively, 

there are X-parametrized families of natural E, inclusions {ix : R + R @X}, respec- 

tively, spectrum level maps {jr : R -+ R AX+} having the following universal property: 

given an X-parametrized family of E, homomorphisms fx : R -+ T, respectively, an 

X-parametrized family of maps of spectra gx : R + E there is a unique E, homomor- 

phisms f : R 8 X + T such that f o ix = fx for each x E X, respectively, a unique map 

ofspectrag:RAX+--+Esuchthatgoj,=g, foreachxEX. 

If we take fx = idR for all x E X we obtain an E, homomorphisms px : R @X -+ R 

such that px o ix = idR. 

Considering the ix : R -+ R 18 X as maps of spectra we obtain an induced map 

I(R,X):RAX++R@X 

satisfying l(R,X) o j, = ix, x E X. Since ix admits a retraction, we have 

5.1. If R is not contractible and X is not empty I(R,X) is essential. 

The universal property also implies 

5.2. The following diagram commutes: 

J@,X)AY+ L(RCMJ) 
F (R@X)AY+ ’ (R@X)@ Y 

RA(X x Y)+ 
I(R,Xx Y) 

’ R@(XxY) 

Specializing to X = Y = S’ we obtain a commutative diagram 

(RASJ.)AS: 
s 

, RA(S’xS’)+ 2 R A S; 

where y is the multiplication of S’. Hence, 

5.3. A(R, S’ ) : R A S: -+ R $9 S’ is S’-equivariant. 
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Given a map f : R A X+ --+ T of spectra such that each f* = f 0 j, : R + T is an E, 

homomorphism, the fx induce a unique E, homomorphism f : R @ X + T such that 

f o i, = fx for all x EX. Since fx = f o i, = f o A(R,X) o j, and fx = f o j, we conclude 

5.4. Let X be a topological space and R and TE, ring spectra. Given a map of spectra 

f : R AX+ 4 T such that each f o j, is an E, homomorphism there exists a unique 

E, homomorphism f : R @X + R such that f o R(R,X) = f. 

5.5. For each x EX we have an R-module structure on R CZI X defined by 

i,*id 
R*(R@,X)- (R@X)*(R&Y)=R@X. 

Clearly, this defines an R-algebra structure on R@X turning ix into an R-algebra ho- 

momorphism. This proves the first part of Theorem H. The second part is a 

well-known consequence of the first part [l, 11.6.11. It is straightforward to show that 

this structure is equivalent to an E, algebra structure as defined in Definition 6.6 

below. 

6. Extensions of the result and final remarks 

6.1. Definition. Let R be an A, or E, ring spectrum, K a unital right R-module and 

L a unital left R-module with structure maps 5~ and CL. The reduced smash product 

over R of K and L is the coequalizer in S-Mod, 

t.Y 
K+R*L :K+L r, KkRL. 

5r 

6.2. If K is a unital Q-R-bimodule, K *R L is a unital Q-module since Q +-preserves 

coequalizers by Lemma 2.14. 

6.3. If R is an E, ring spectrum any unital R-module is an R-bimodule in the obvious 

way and *R defines a bifimctor 

R-A’od, x R-./Hod, --f R-A’od, 

6.4. Proposition. Let Q and R be A, or E, ring spectra, K a unital right Q-module, 

L a unital Q-R-bimodule and M a unital left R-module. Then there are natural isomor- 

phisms 

(1) (K*QL)*RM 2 K*Q(L*RM), 

(2) R*RM eM, 

(3) if R is an E, ring spectrum, then L ts M ” M *R L. 
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Proof. (1) follows from the fact that K * Q - preserves coequalizers and that two 

coequalizers commute. (3) is trivial, and (2) holds because 

p * id 

R*R*M_, -R+M LM 
id e t 

is a coequalizer by [12, VI. 71. 0 

6.5. Corollary. If R is an E, ring spectrum R-&ode is a symmetric monoidal cate- 
gory with *R as tensor product and R as unit. 

6.6. Definition. Let R be an E, ring spectrum. An (E,, respectively) A, R-algebra 
is a (commutative) monoid in the symmetric monoidal category R-&od,. 

We are interested in the commutative case. Let ER-&lg denote the category of 

E, R-algebras and R-algebra homomorphisms. We topologically enrich ER-dig in the 

obvious way so that the forgetful 

u : ER-&lg + R-dad, 

is continuous. U has a continuous left adjoint 

F : R-&od, --f ER-&lg 

defined as follows: let 9’ denote the category of finite sets z= { 1,. . . , n} n 2. 0 with 

Q= C#J and injections. For each M E R-&?od, define a functor 

FM : 9’ + R-JJod, 

by FM(~) =M*R” with M*R” = R and for each ordered injection f : m -+ n by 

F’(f) : M*@ Z Nr *RNZ *R. . . TV N, 4 M*@, 

where Nk = M if k E im( f) and Nk = R otherwise. ci is defined by the identity on M 
and by the unital structure on M 

RZR+S-R+MrM.M 

FM applied to a permutation is the obvious morphism. We define 

F(M) = colim FM 

in the category R-Mod,. Since FM is a connected diagram this colimit is created in 

S-&od, and since M *R - preserves colimits of connected diagrams the concatenation 

of finite sets induces a multiplication on F(M) making it a commutative monoid in 

R-dig. Extending the proofs of Section 3 to R-algebras and modules over R-algebras 

we obtain 
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6.7. Theorem. ER-zZlg is topologically enriched and contains all indexed limits and 
colimits. All indexed limits are created in 9%. 

Next let R be an E, ring spectrum, A a commutative R-algebra and M an A-module. 

6.8. Definition, The topological Hochschild homology THHR(A;M) of A with coelfi- 

cients in A4 is the topological realization in 9% of the simplicial R-module 

[n] t-+ A*@ *R&I! 

with the Hochschild structure maps. 

As in Section 4 we obtain 

6.9. Theorem. Let R be an E, ring spectrum and A an E, R-algebra. Then there is 

a natural isomorphism in ER-.&lg 

THHR(A) g A @ S’ 

and the multiplication of THHR(A) is induced by the folding map S’ u S’ --t S’. 

Elmendorf et al. [7] are contemplating another variant of a category of S-modules 

[8]. To distinguish it from Definition 2.3 we call its objects strong S-modules. 

6.10. Definition (Elmendorf and May [8]). The category sS-.&‘od of strong S-modules 
is the subcategory of S-Mod of all objects M for which the map S As A4 + M is an 

isomorphism. 

sS-&od is a coreflective subcategory of S-dad in the sense of [12, IV. 31 with 

the continuous coreflector 

S-Aod --+sS-&od, R H S ~~ R. 

Hence, [12, IV. Excercise 3.71. 

6.11. Proposition. As a topologically enriched category sS-&?od contains all indexed 
colimits and they are created in S-&‘od. It also contains all indexed limits which are 
obtained from the indexed limits in S-JZod by applying the corejlector. 

Note that for strong unital S-modules AS coincides with * so that the category 

S&?od, is redundant: we can work in sS-&od. C& has to be replaced by s&“, 

the subcategory of E, ring spectra which are strong S-modules. If R is an E, ring 

spectrum then S As R is an E, ring spectrum in sJ& which is weakly equivalent to 

R. Hence, we may restrict our attention to SC?,. Also observe that SC?, has the same 

indexed colimits as 8,. If we now replace * by As throughout Sections 3 and 4 and 
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the singular functor & : c% -+ Sf? by the functor 

all proofs go through in this setting. 

A final word to the notion of unital R-module. In [7, Ch. II] Elmendorf et al. 

showed that A, and E, ring spectra R are S-modules with structure maps q : S + R 

and p : R As R --f R such that p is associative (and commutative in the E, case) and 

that 

SA,R tAid ,R~,R, idA? 

\I/ 
R/\,S 

R 

commutes. A module over an A, or Em ring spectrum R is an S-module A4 with a 

structure map 5 : R As M + A4 satisfying the obvious associativity and unit conditions. 

Let R-_&od denote the category of such R-modules and R-module homomorphisms. It 

is not difficult to show that our category R-_/lode of unital R-modules is isomorphic 

to the category R-&od under R. 
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